Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sao Paulo Med J ; 140(1): 123-133, 2022.
Article in English | MEDLINE | ID: covidwho-1362119

ABSTRACT

BACKGROUND: The intensity of the thromboprophylaxis needed as a potential factor for preventing inpatient mortality due to coronavirus disease-19 (COVID-19) remains unclear. OBJECTIVE: To explore the association between anticoagulation intensity and COVID-19 survival. DESIGN AND SETTING: Retrospective observational study in a tertiary-level hospital in Spain. METHODS: Low-molecular-weight heparin (LMWH) status was ascertained based on prescription at admission. To control for immortal time bias, anticoagulant use was analyzed as a time-dependent variable. RESULTS: 690 patients were included (median age, 72 years). LMWH was administered to 615 patients, starting from hospital admission (89.1%). 410 (66.7%) received prophylactic-dose LMWH; 120 (19.5%), therapeutic-dose LMWH; and another 85 (13.8%) who presented respiratory failure, high D-dimer levels (> 3 mg/l) and non-worsening of inflammation markers received prophylaxis of intermediate-dose LMWH. The overall inpatient-mortality rate was 38.5%. The anticoagulant nonuser group presented higher mortality risk than each of the following groups: any LMWH users (HR 2.1; 95% CI: 1.40-3.15); the prophylactic-dose heparin group (HR 2.39; 95% CI, 1.57-3.64); and the users of heparin dose according to biomarkers (HR 6.52; 95% CI, 2.95-14.41). 3.4% of the patients experienced major hemorrhage. 2.8% of the patients developed an episode of thromboembolism. CONCLUSIONS: This observational study showed that LMWH administered at the time of admission was associated with lower mortality among unselected adult COVID-19 inpatients. The magnitude of the benefit may have been greatest for the intermediate-dose subgroup. Randomized controlled trials to assess the benefit of heparin within different therapeutic regimes for COVID-19 patients are required.


Subject(s)
COVID-19 , Venous Thromboembolism , Adult , Aged , Anticoagulants/therapeutic use , Heparin, Low-Molecular-Weight/therapeutic use , Humans , Inpatients , SARS-CoV-2
2.
PLoS One ; 16(4): e0240200, 2021.
Article in English | MEDLINE | ID: covidwho-1197366

ABSTRACT

BACKGROUND: Efficient and early triage of hospitalized Covid-19 patients to detect those with higher risk of severe disease is essential for appropriate case management. METHODS: We trained, validated, and externally tested a machine-learning model to early identify patients who will die or require mechanical ventilation during hospitalization from clinical and laboratory features obtained at admission. A development cohort with 918 Covid-19 patients was used for training and internal validation, and 352 patients from another hospital were used for external testing. Performance of the model was evaluated by calculating the area under the receiver-operating-characteristic curve (AUC), sensitivity and specificity. RESULTS: A total of 363 of 918 (39.5%) and 128 of 352 (36.4%) Covid-19 patients from the development and external testing cohort, respectively, required mechanical ventilation or died during hospitalization. In the development cohort, the model obtained an AUC of 0.85 (95% confidence interval [CI], 0.82 to 0.87) for predicting severity of disease progression. Variables ranked according to their contribution to the model were the peripheral blood oxygen saturation (SpO2)/fraction of inspired oxygen (FiO2) ratio, age, estimated glomerular filtration rate, procalcitonin, C-reactive protein, updated Charlson comorbidity index and lymphocytes. In the external testing cohort, the model performed an AUC of 0.83 (95% CI, 0.81 to 0.85). This model is deployed in an open source calculator, in which Covid-19 patients at admission are individually stratified as being at high or non-high risk for severe disease progression. CONCLUSIONS: This machine-learning model, applied at hospital admission, predicts risk of severe disease progression in Covid-19 patients.


Subject(s)
COVID-19/classification , Machine Learning , Adult , Aged , Area Under Curve , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/therapy , Cohort Studies , Female , Forecasting , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Models, Statistical , ROC Curve , Respiration, Artificial , Retrospective Studies , Risk Assessment , SARS-CoV-2/isolation & purification , Severity of Illness Index , Spain/epidemiology , Triage/methods
SELECTION OF CITATIONS
SEARCH DETAIL